Domain decomposition techniques for interfacial discontinuities

Geordie McBain

Institut Jean le Rond d'Alembert

December 5, 2012

Institut Jean le Rond d'Alembert

G. D. McBain

G D McBain

Connexion and substructuring

- Two ways to look at domain decomposition
 - Decomposing domains by iterative substructuring
 - Linking subdomains through interfacial conditions
- Small easy generalizations of techniques for the former mean they can be used for the latter.

Queries on freefempp mailing list

Electrical simulation with a voltage jump at an intermediate layer (2011-05-20)

My questions are:

1) Is it possible with FreeFem++ to apply a constant voltage jump at the surface where both cubes are touching and how to do it?

2) If possible, how to insert a resistive 2D sheet at this surface (current dependent voltage jump)?

Non linear heat transfer equation and Thermal Contact Resistance (TCR) (2012-08-15) how could we simulate the Thermal contact resistance between two materials?

Steady thermal conduction

For definiteness, consider the steady conduction of heat

$$-
abla \cdot (\mathsf{K}
abla T) = s$$

where

- K conductivity
- T temperature
- s volumetric rate of generation

• Weak form $(\forall U)$:

$$\langle \nabla U, \mathsf{K} \nabla T
angle - [U, \mathbf{\hat{n}} \cdot \mathsf{K} \nabla T] - \langle U, s
angle = 0$$

G. D. McBain

Institut Jean le Rond d'Alembert

Natural interfacial conditions

basic interfacial conditions (like Kirchhoff's circuit laws):

- equality of temperature (like potential at node)
- zero sum of heat (like current into node)

$$T_1 = T_2$$
$$\mathbf{\hat{n}}_1 \cdot \mathsf{K}_1 \nabla T_1 + \mathbf{\hat{n}}_2 \cdot \mathsf{K}_2 \nabla T_2 = 0$$

• Often have $K_1 \neq K_2$ in applications.

Classical engineering heat transfer problem I

Given a two-layer furnace wall of thickness and conductivity L_i and K_i (i = 1, 2), if the inside is at T_1 and the outside at T_2 , what is the temperature distribution?

Dirichlet–Dirichlet solutions, given T_{int} :

subdomain solutions:
$$T_1 - T_{int} = L_1 q_1 / K_1$$

 $T_{int} - T_2 = L_2 q_2 / K_2$

Poincaré–Steklov Dirichlet→Neumann operator:

$$q_{1} - q_{2} = \frac{T_{1}K_{1}}{L_{1}} + \frac{T_{2}K_{2}}{L_{2}} - \left(\frac{K_{1}}{L_{1}} + \frac{K_{2}}{L_{2}}\right) T_{\text{int}}$$

Solution: $T_{\text{int}} = \left(\frac{T_{1}K_{1}}{L_{1}} + \frac{T_{2}K_{2}}{L_{2}}\right) \div \left(\frac{K_{1}}{L_{1}} + \frac{K_{2}}{L_{2}}\right)$

G. D. McBain

Institut Jean le Rond d'Alembert

Classical engineering heat transfer problem II

Given a two-layer furnace wall of thickness and conductivity L_i and K_i (i = 1, 2), if the inside is at T_1 and the outside at T_2 , how much heat q is lost?

Neumann–Neumann solutions, given q:

subdomain solutions:
$$T_1 - T_{int}^- = L_1 q/K_1$$

 $T_{int}^+ - T_2 = L_2 q/K_2$

Poincaré–Steklov Neumann→Dirichlet operator:

$$T_{\text{int}}^{+} - T_{\text{int}}^{-} = T_2 - T_1 + \left(\frac{L_1}{K_1} + \frac{L_2}{K_2}\right) q$$

Solution: $q = \frac{T_1 - T_2}{\frac{L_1}{K_1} + \frac{L_2}{K_2}}$

Neumann-Neumann domain decomposition

- This idea generalizes to finite element solutions.
- Guess the flux at the interface.
- Solve Neumann problem on either subdomain.
- Compute the temperature mismatch at interface.
- Iterate to find the flux eliminating the mismatch.

G. D. McBain

Generalized interfacial conditions

- various matching criteria:
 - specified jump: $T_1 = T_2 + \Delta T$
 - nonlinear algebraic: $f(T_1, T_2) = 0$
 - e.g. equilibrium chemical partitioning between phases
 - contact resistance: $T_1 = T_2 + Rq$
 - general nonlinear: $f(T_1, T_2, q) = 0$
- Any of these fit the Neumann–Neumann framework.
- Just 'solve' this equation for the interfacial flux.
- Noting that $T_1 = T_1(q)$ and $T_2 = T_2(q)$.

G. D. McBain

Generalized interfacial conditions (cont.)

- Could also have a superficial power source.
- Then there's a jump in the flux.
- Method should still apply
 - guess the flux on one side
 - calculate the flux on the other from the condition
 - solve the two Neumann problems
 - etc.

Institut Jean le Rond d'Alembert

Example of Carnes & Copps (2008)

CARNES, B. R., & K. D. COPPS (2008) Thermal contact algorithms. Sandia Report SAND2008-2607

D.E.:
$$-\nabla^2 T = \operatorname{sgn} x$$
 $(-1 < x < 1)$
Dirichlet conditions: $T(-1) = 0$, $T(1) = 1$
flux balance: $-T'(0^-) = -T'(0^+)$
interfacial resistance: $-RT'(0) = T(0^-) - T(0^+)$

Simple example with interfacial resistance

New test cas

Results of Carnes & Copps (2008)

G. D. McBain

Institut Jean le Rond d'Alembert

Simple example with interfacial resistance

New test cas

Reproduction in FreeFem++

G. D. McBain

Domain decomposition techniques for interfacial discontinuities

Institut Jean le Rond d'Alembert

Introduction

Simple example with interfacial resistance

New test cas

Implementation in FreeFem++

Geometry and mesh

Solve in two dimensions (to investigate mismatched meshes).

G. D. McBain

Institut Jean le Rond d'Alembert

Image: A math a math

G. D. McBain

Implementation in FreeFem++

Implementation in FreeFem++

- See § 9.8.3 Schwarz-gc.edp.
- define interfacial flux q on one whole subdomain
 - values meaningless off interface
- solve Neumann problem for each subdomain
- compute interfacial temperature mismatch
- iterate using conjugate gradients

G D McBain

Implementation in FreeFem++

Subdomain Neumann problems

```
problem Pb1 (u1, v1, init=i) =
  int2d (Th1) dot(grad(v1), grad(u1))
  + int2d (Th1) (-v1*s1)
  + int1d (Th1, inner) (+q*v1)
  + on (left. u1=0):
problem Pb2 (u2, v2, init=i) =
  int2d(Th2) dot(grad(v2), grad(u2))
  + int2d (Th2) (-v2*s2)
  + int1d (Th2, inner) (-q*v2)
  + on (right, u2=1);
```

Int	rod	11101	
	100		

Simple example with interfacial resistance $\circ\circ\circ\circ\circ\circ\circ\circ$

ew test case

Implementation in FreeFem++

Computing the mismatch $\Delta T - Rq$

```
varf b (u1, v1) = int1d (Th1, inner) (v1 * u1);
matrix B = b (Vh1, Vh1);
```

```
func real[int] BoundaryProblem (real[int] &l) {
    q[] = 1;
    Pb1; Pb2; i++;
    v1 = u1 - u2; // temperature jump
    real[int] q1 = B * v1[];
    v1 = R * q; // resistive jump
    real[int] q2 = B * v1[];
    q[] = q1 - q2;
    return q[];
};
```

▲ @ ▶ < ∃ ▶</p>

Introduction

G. D. McBain

Simple example with interfacial resistance 0000000

New test case

< 冊

Conclusion

Implementation in FreeFem++

Finding the correct interfacial flux

Vh1 p=0; LinearCG (BoundaryProblem, p[]); BoundaryProblem (p[]);

Institut Jean le Rond d'Alembert

G D McBain

Implementation in FreeFem++

Neumann-Neumann method

- A particular advantage of the Neumann–Neumann method:
 - We don't have to compute interfacial fluxes. Even with an interfacial resistance, for which the flux appears in the matching condition, we can use the guessed interfacial flux.
- Having to compute fluxes on each subdomain then transfer to where iteration variable was defined would have been fiddly.
- Thus a Dirichlet–Dirichlet method is less convenient.
 - not attempted here

Introduction

G. D. McBain

Simple example with interfacial resistance 000000

New test case

Implementation in FreeFem++

Summary of extension on $\S9.8.3$

Instead of just calculating the temperature jump, also subtract resistance times the guessed flux.

Institut Jean le Rond d'Alembert

G D McBain

An axially symmetric problem

- Instead of Carnes & Copps (2008) one-dimensional solution
- we propose an axially symmetric one.
- Still has a simple exact solution
- less trivial realization in two-dimensional finite elements
- Also tests curved interfaces.

Simple example with interfacial resistance

New test case

The axially symmetric problem

D.E.:
$$-\nabla \cdot (K_1 \nabla T_1) = s_1$$
 $(r_0 < r < r_1)$
 $-\nabla \cdot (K_2 \nabla T_2) = s_2$ $(r_1 < r < r_2)$
Dirichlet conditions: $T(r_0) = T_0$
 $T(r_2) = T_2$
flux balance: $-T'(r_1^-) = -T'(r_1^+)$
interfacial resistance: $-RT'(r_1) = T(r_1^-) - T(r_1^+)$

Institut Jean le Rond d'Alembert

G. D. McBain

General analytical solution of Neumann problem

- Dirichlet condition at one radius $T(r_i) = T_i$
- Guessed Neumann condition at another $-K_i T'(r_{int}) = q_{int}$
- source s_i and conductivity K_i constant per annular layer
- centre excluded: $r_i > 0$

$$T(r) = T_i + \frac{s_i}{2} \left(r_{\text{int}}^2 \ln \frac{r}{r_i} + \frac{r_i^2 - r^2}{2} \right) - \frac{r_{\text{int}} q_{\text{int}}}{K_i} \ln \frac{r}{r_i}$$

Institut Jean le Rond d'Alembert

G. D. McBain

General analytical solution for Poincaré-Steklov operator I

- flux q for specified contact resistance R
- \blacksquare two layers, $\mathit{r}_0 < \mathit{r} < \mathit{r}_{\mathrm{int}}$ and $\mathit{r}_{\mathrm{int}} < \mathit{r} < \mathit{r}_1$

$$\frac{q = \frac{T_0 - T_1 - \frac{s_1}{2K_1} \left(r_{\text{int}}^2 \ln \frac{r_{\text{int}}}{r_1} + \frac{r_1^2 - r_{\text{int}}^2}{2} \right) + \frac{s_0}{2K_0} \left(r_{\text{int}}^2 \ln \frac{r_{\text{int}}}{r_0} + \frac{r_0^2 - r_{\text{int}}^2}{2} \right)}{R - r_{\text{int}} \left(\frac{\ln \frac{r_{\text{int}}}{r_1}}{K_1} - \frac{\ln \frac{r_{\text{int}}}{r_0}}{K_0} \right)}$$

Institut Jean le Rond d'Alembert

G. D. McBain

General analytical solution for Poincaré–Steklov operator II

- flux q for specified temperature jump ΔT
- \blacksquare two layers, $\textit{r}_0 < \textit{r} < \textit{r}_{\rm int}$ and $\textit{r}_{\rm int} < \textit{r} < \textit{r}_1$

$$\frac{q = \frac{T_0 - T_1 - \Delta T - \frac{s_1}{2K_1} \left(r_{\text{int}}^2 \ln \frac{r_{\text{int}}}{r_1} + \frac{r_1^2 - r_{\text{int}}^2}{2} \right) + \frac{s_0}{2K_0} \left(r_{\text{int}}^2 \ln \frac{r_{\text{int}}}{r_0} + \frac{r_0^2 - r_{\text{int}}^2}{2} \right)}{r_{\text{int}} \left(\frac{\ln \frac{r_{\text{int}}}{K_1}}{K_1} - \frac{\ln \frac{r_{\text{int}}}{r_0}}{K_0} \right)}$$

Institut Jean le Rond d'Alembert

G. D. McBain

New test case

Geometry and mesh

Curved interfaces necessitate finer meshes.

Test problem:

■
$$s_0 = 1, s_1 = 0$$

•
$$K_0 = 1, K_1 = 2$$

•
$$r_0 = \frac{1}{2}, r_1 = 2$$

$$r_{\rm int} = 1$$

Institut Jean le Rond d'Alembert

G. D. McBain

Calculating mismatches

```
• contact resistance R:
```

```
v0 = u0 - u1; // temperature jump
     real[int] q0 = B * v0[];
     v0 = R * q; // resistive jump
     real[int] q1 = B * v0[];
     q[] = q0 - q1;
     return q[];
\blacksquare jump \Delta T:
     v0 = u0 - (u1 + DT); // temperature jump shortfall
     real[int] q0 = B * v0[];
     return q0;
```

Simple example with interfacial resistance

New test case

Results for various contact resistances

G. D. McBain

Institut Jean le Rond d'Alembert

Simple example with interfacial resistance

New test case

Results for various temperature jumps

G. D. McBain

Institut Jean le Rond d'Alembert

G D McBain

Conclusion

- Many kinds of interfacial discontinuity can be handled easily in FreeFem++.
- Use domain decomposition.
- Guess the flux across the interface (Neumann–Neumann).
- Compute the mismatch (Neumann→Dirichlet Poincaré–Steklov).
- Iterate to find the flux giving the right mismatch.