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PLANE POLOIDAL-TOROIDAL DECOMPOSITION OF
DOUBLY PERIODIC VECTOR FIELDS. PART 2.

THE STOKES EQUATIONS

G. D. MCBAIN1
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Abstract

We continue our study of the adaptation from spherical to doubly periodic slot domains of
the poloidal-toroidal representation of vector fields. Building on the successful construction
of an orthogonal quinquepartite decomposition of doubly periodic vector fields of arbitrary
divergence with integral representations for the projections of known vector fields and
equivalent scalar representations for unknown vector fields (Part 1), we now present a
decomposition of vector field equations into an equivalent set of scalar field equations. The
Stokes equations for slow viscous incompressible fluid flow in an arbitrary force field are
treated as an example, and for them the application of the decomposition uncouples the
conservation of momentum equation from the conservation of mass constraint. The resulting
scalar equations are then solved by elementary methods. The extension to generalised
Stokes equations resulting from the application of various time discretisation schemes to
the Navier-Stokes equations is also solved.

1. Introduction

In Part 1 [8] an orthogonal decomposition of doubly periodic (d.p.) vector fields into
five parts, three of which are divergence-free, was derived. Associated with this quin-
quepartite decomposition was a representation of such fields in terms of scalars. An
advantage of this representation is that unknown vector fields known to be divergence-
free can automatically be represented as such simply by setting to zero the scalars
associated with the two non-divergence-free subspaces.

In Part 2 (Section2) the quinquepartite decomposition is used to derive a set of
scalar equations equivalent to a d.p. vector field equationf = 0. The derivation uses
the equivalence between the vanishing off and the vanishing of its projections in
each of the five subspaces.
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As an example, in Section3 we treat the Stokes equations for viscous fluid flow
between two solid parallel walls under an arbitrary body force. The equivalent scalar
equations can then be solved by elementary methods.

An appendix treats a generalised Stokes problem.

1.1. Stokes equations The Navier-Stokes equations

Re

(
@u
@t

+ u · ∇u
)

= −∇P + b + ∇2u;

∇ · u = 0

describe the evolution in timet of the flow of incompressible fluid with velocityu
and pressureP subject to a body forceb. The nonnegativeReynolds numberRe
signifies the relative strength of inertial and viscous forces. Setting Re= 0 gives the
Stokes equations. The Stokes equations are of interest because ‘as is well known,
the study of the properties of solutions to the Stokes system plays an essential role
in the mathematical theory of viscous fluid flows governed by the Navier-Stokes
equations’ [5].

Also, the Stokes equations asymptotically describe very slow flows of very viscous
fluids on very short length scales. Further, Stokes equations with knownb 6= 0 arise
in asymptotic expansions for the Navier-Stokes equations at small Re, not merely for
the zeroth orderO.1/ term, but, in bounded domains, forall orders [10, 11, 12].

Equations closely related to the Stokes equations like

Þu = −∇P + b + ∇2u; (1.1)

∇ · u = 0 (1.2)

even arise in numerical methods for solving Navier-Stokes problems at arbitrary
Reynolds numbers. When taking into account implicitly the viscous term and explic-
itly the advection term, the time discretisation results in a generalised Stokes problem
(1.1)–(1.2) to be solved at each time-step [14, 15]. The same equations result from
various operator splitting techniques [3, 19]. Thus, this extension to the Stokes prob-
lem is relevant to our longer term aim of developing a Navier-Stokes solver based on
the quinquepartite decomposition.

2. Scalar equivalents of vector field equations

In Section2, a set of scalar equations equivalent to the d.p. vector field equation
f .x; y; z/ = 0 is derived.
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2.1. Norms Since the five projections are mutually orthogonal and collectively
complete, we have the Pythagorean equation

‖ f ‖2 = ‖PN f ‖2 + ‖PB f ‖2 + ‖PS f ‖2 + ‖PP f ‖2 + ‖PT f ‖2: (2.1)

The squares of the norms here are (in terms of the scaloidal, poloidal and toroidal
potentials of f : ¦ , 	 and− )

‖PN f ‖2 = ‖〈 fx〉� − 〈 fx〉‖2; (2.2)

‖PB f ‖2 = ‖〈 fx〉‖2 + ‖〈 fy〉�‖2 + ‖〈 fz〉�‖2; (2.3)

‖PS f ‖2 = ‖∇¦‖2; (2.4)

‖PP f ‖2 = ‖∇2
�
	 ‖2 + ‖∇

�
D	 ‖2 and (2.5)

‖PT f ‖2 = ‖3−‖2: (2.6)

The scaloidal (2.4), poloidal (2.5) and toroidal (2.6) square-norms can be expressed
alternatively as

‖PS f ‖2 = 〈¦;SS f 〉; (2.7)

‖PP f ‖2 = 〈	;SP f 〉 − .x1 − x0/
−1

[〈	;∇� · f 〉�
]x1

x0
and (2.8)

‖PT f ‖2 = 〈−;ST f 〉; (2.9)

by defining the scalar operators

SS f = ∇ · f − 〈∇ · f 〉�; (2.10)

SP f = −∇2
�

fx + D∇
�

· f and

ST f = 3 · f :

In Section2.2we use the Pythagorean equation (2.1) to reduce a vector field equation
to an equivalent set of scalar equations.

2.2. Decomposition of vector field equations It follows from the Pythagorean
equation (2.1) that the vector field equation

f .x; y; z/ = f
(

x; y + 2³

k cos
; z + 2³

k sin

)
= 0

is equivalent to‖P f ‖ = 0 for P = PN , PB, PS , PP and PT ; however, it is not
necessary to actually carry out the projections, as shown by the following theorem.
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THEOREM2.1. The d.p. vector field equationf = 0 is equivalent to the seven d.p.
scalar field equations

〈 fx〉� − 〈 fx〉 = 0; (2.11)

〈 fx〉 = 〈 fy〉� = 〈 fz〉� = 0; (2.12)

SS f = 0; (2.13)

SP f = 0 and (2.14)

ST f = 0 (2.15)

and the end conditions

−∇� · f = 0 .x = x0; x1/: (2.16)

PROOF. From (2.2), the vanishing of theN -norm is equivalent to (2.11).
From (2.3), a zeroB-part is equivalent to (2.12).
The sufficiency of (2.13)–(2.16) is evident from the alternate expressions for the

norms (2.7)–(2.9).
Their necessity follows from the uniqueness of the potentials¦ , 	 and− (Part 1);

for example, PS f = 0 implies¦ = 0 so that (2.13) follows from the definition of
SS f (2.10), with similar results for the poloidal and toroidal parts. The vanishing
of 	 throughoutx0 < x < x1 also implies (2.16), by the boundary condition on the
Poisson equation for the poloidal potential.

2.3. Fourier decomposition of vector field equations The scaloidal, poloidal and
toroidal subspaces can be further partitioned with the trigonometric Fourier decom-
position. The associated norms are

‖PS`
v‖2 = 〈

¦̃`;SS`
v
〉
;

‖PP`
v‖2 = 〈

	̃`;SP`
v
〉 + .x1 − x0/

−1
[〈
	̃`; �

2
` D	̃`

〉
�

]x1

x0
and

‖PT`
v‖2 = 〈

−̃`;ST`
v
〉
;

where

SS`
v ≡ 〈è ;SS v〉� = .�2

` − D2/¦̃`;

SP`
v ≡ 〈è ;SPv〉� = �2

` .�
2
` − D2/	̃ and

ST`
v ≡ 〈è ;ST v〉� = �2

` −̃`:

Then in (2.1) the last three terms can be replaced with∑
`

′(‖PS`
f ‖2 + ‖PP`

f ‖2 + ‖PT`
f ‖2

)
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(a prime being inserted above the summation when the term for whichl y = l z = 0 is
to be omitted) and the last four equations of Theorem2.1by

SS`
f = D〈è ; fx〉� + i�`〈è ; f�`

〉� = 0;

SP`
f = �2

` 〈è ; fx〉� + i�`D〈è ; f�`
〉� = 0 and

ST`
f = i�`〈è ; f�`〉� = 0

for all ` 6= 0. At the ends (x = x0; x1)

〈è ;−∇� · f 〉� = −i�`〈è ; f�`
〉� = 0:

3. The Stokes equations

The Stokes equations for creeping flow of an incompressible fluid with a body
forceb are

0 = −∇P + b + ∇2u; (3.1)

∇ · u = 0 (3.2)

subject to appropriate conditions at the ends; for example, prescribedu. In this section
we derive the solution of (3.1)–(3.2); the solution of the generalised Stokes problem
(1.1)–(1.2) is given inAppendix A.

3.1. Representation of velocity and pressure The incompressibility constraint (3.2)
implies the existence of the Schmitt-Wahl mean-poloidal-toroidal representation [8,
17]

u = U ix + V iy + Wiz − ∇2
�
	 ix + ∇

�
D	 − 3−;

where∇U = ∇�V = ∇�W = 0, 〈	 〉� = 〈− 〉� = 0 and	 and− are d.p. The
important derived scalars are SS u = 0, SPu = ∇2

�
∇2	 and ST u = −∇2

�
− , and

SP`
u = �2

` .�
2
` − D2/	̃` and ST`

u = �2
` −̃`.

Although the pressure gradient∇P is d.p., the pressure needn’t be. The most
general d.p. form is∇P = px ix + pyiy + pziz + ∇$ , where∇�px = ∇ py =
∇ pz = 0, 〈$ 〉� = 0, and$ is d.p. The derived scalars are SS∇P = ∇2$ ,
SS`

∇P = .D2 − �2
` /$̃`, and SP∇P = ST∇P = 0.

3.2. Decomposition of the Stokes momentum equationIn terms of the repre-
sentations of Section3.1, the decomposition (2.11)–(2.15) of the Stokes momentum
equation (3.1) leads to four velocity equations

D2V = py − 〈by〉�; D2W = pz − 〈bz〉�;
−∇2

�
∇4	 = −∇2

�
bx + D∇� · b ≡ SPb and (3.3)

∇2
�
∇2− = 3 · b ≡ ST b; (3.4)
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three pressure equations

px − 〈px〉 = 〈bx〉� − 〈bx〉; 〈px〉 = 〈bx〉 and

∇2$ = ∇ · b − 〈∇ · b〉� ≡ SS b; (3.5)

and the end condition

∇2
�
$ = ∇2

�
D∇2	 + ∇� · b .x = x0; x1/: (3.6)

The end condition (3.6) provides a boundary condition for (3.5) whenever	 is
determined by (3.3) and velocity boundary conditions.

The poloidal (3.3) and toroidal (3.4) Stokes equations are related to the normal
velocity-normal vorticity equations used by Chandrasekhar [4, pages 20–21] and
others [2]; in the present notation, the nonmean part of the normal velocity is−∇2

�
	

and that of the normal vorticity is−∇2
�
− .

3.2.1. Fourier decomposition of the Stokes equationsEither by using the modifi-
cation of Theorem2.1 described in Section2.3 or by taking the Fourier coefficients
of the equations in Section3.2, we can replace the poloidal (3.3), toroidal (3.4) and
scaloidal (3.5) equations with (for all̀ 6= 0)

�2
`

(
�2

` − D2
)2
	̃` = SP`

b ≡ �2
` 〈è ; bx〉� + i�`D〈è ; b�`

〉�; (3.7)

�2
`

(
�2

` − D2
)
−̃` = ST`

b ≡ i�`〈è ; b�`〉�
and

.D2 − �2
` /$̃` = D〈è ; bx〉� + i�`

〈
è ; b�`

〉
�

≡ SS`
b: (3.8)

The end condition (3.6) becomes

�2
` $̃` = �2

` D
(
D2 − �2

`

)
	̃` − i�`〈è ; b�`

〉� .x = x0; x1/:

3.3. Solution of the Stokes problem in a slot For a slot between solid walls at
x = ±1, the boundary conditions are

U = V = W = 	̃` = D	̃` = −̃` = 0: (3.9)

The mean velocity componentV is

V.¾/ = 〈
G.x; ¾/; 〈by〉� − py

〉
; (3.10)

whereG.x; ¾/ = {1 + min.x; ¾ /}{1 − max.x; ¾ /}. The same solution applies toW
with the y subscript replaced byz.

The Fourier toroidal component is̃−`.¾/ = 〈G.x; ¾/;ST`
b〉, where

G.x; ¾/ = 2 sinh�` {1 + min.x; ¾ /} sinh�` {1 − max.x; ¾ /}
�3

` sinh 2�`

: (3.11)
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3.3.1. Solution of the poloidal part of the Stokes problemThe poloidal part is more
complicated, being governed by (3.7), a fourth-, rather than second-, order equation;
however, a solution can be obtained systematically by variation of parameters (see,
for example, [6]).

A basis for the solution space of (3.7) with SP`
b = 0 is

p1.x/ = .1 + x/ sinh�`.1 + x/;

p2.x/ = sinh 2�` sinh�`.1 + x/− �`.1 + x/ sinh�`.1 − x/;

p3.x/ = .1 − x/ sinh�`.1 − x/ and

p4.x/ = sinh 2�` sinh�`.1 − x/− �`.1 − x/ sinh�`.1 + x/:

Notice that p1, p2, Dp1 and Dp2 vanish atx = −1 while p3 and p4 satisfy the
boundary conditions (3.9) at x = 1. Then

	̃`.¾/ = 〈G.x; ¾/;SP`
b〉; (3.12)

where

G.x; ¾/ =
{

+q3.x/p3.¾/+ q4.x/p4.¾/ x < ¾ ;

−q1.x/p1.¾/− q2.x/p2.¾/ x > ¾
(3.13)

is the solution provided that
p1 p2 p3 p4

Dp1 Dp2 Dp3 Dp4

D2 p1 D2 p2 D2 p3 D2 p4

D3 p1 D3 p2 D3 p3 D3 p4




q1

q2

q3

q4

 =


0
0
0

1=2�2
`

 :
Cramer’s rule (see, for example, [1, page 55]) leads to

q1.x/ = −W.p2; p3; p4; x/=2�2
` W.p1; p2; p3; p4; x/; (3.14)

q2.x/ = +W.p1; p3; p4; x/=2�2
` W.p1; p2; p3; p4; x/; (3.15)

q3.x/ = −W.p1; p2; p4; x/=2�2
` W.p1; p2; p3; p4; x/ and (3.16)

q4.x/ = +W.p1; p2; p3; x/=2�2
` W.p1; p2; p3; p4; x/; (3.17)

whereW stands for the Wronskian (see, for example, [1, page 132])

W.p1; p2; p3; x/ ≡
∣∣∣∣∣∣

p1 p2 p3

Dp1 Dp2 Dp3

D2 p1 D2 p2 D2 p3

∣∣∣∣∣∣ :
Since (3.7) is self-adjoint with constant coefficients,W.p1; p2; p3; p4; x/ is a constant;
a consequence of Abel’s formula [18, page 203]. Here

W.p1; p2; p3; p4/ = −�4
` .cosh 4�` − 1/.cosh 4�` − 1 − 8�2

` /
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and

W.p2; p3; p4; x/ = −�3
` sinh 4�` sinh�`.1 + x/

+ �3
` x.cosh 4�` − 1/ cosh�`.1 + x/

+ {.cosh 4�` − 1/ cosh 2�` + 2�` sinh 2�`} �2
` sinh�`.1 − x/

− 4�4
` .1 − x/ sinh 2�` cosh�`.1 − x/;

W.p1; p3; p4; x/ = −2�2
` sinh 2�` sinh�`.1 + x/

+ �2
` x.cosh 4�` − 1/ cosh�`.1 − x/

+ .cosh 4�` − 1 + �` sinh 4�`/ �` sinh�`.1 − x/

− 4�3
` .1 − x/ sinh 2�` cosh�`.1 + x/;

W.p1; p2; p4; x/ = �3
` sinh 4�` sinh�`.1 − x/

+ �3
` x.cosh 4�` − 1/ cosh�`.1 − x/

− {.cosh 4�` − 1/ cosh 2�` + 2�` sinh 2�`} �2
` sinh�`.1 + x/

+ 4�4
` .1 + x/ sinh 2�` cosh�`.1 + x/ and

W.p1; p2; p3; x/ = 2�2
` sinh 2�` sinh�`.1 − x/

+ �2
` x.cosh 4�` − 1/ cosh�`.1 + x/

− {cosh 4�` − 1 + �` sinh 4�`} �` sinh�`.1 + x/

+ 4�3
` .1 + x/ sinh 2�` cosh�`.1 − x/:

3.4. Examples of Stokes solutions

3.4.1. Base flow componentsIf the body force is analytic inx so that

f .x/ ≡ 〈by〉� − py =
∞∑

k=0

fkxk

then (3.10) gives

V.x/ =
∞∑

k=0

fk
{1 + .−1/k}=2 + {1 − .−1/k}x=2 − xk+2

.k + 1/.k + 2/
:

Important special cases includef .x/ = 1: V.x/ = .1 − x2/=2, that is, Poiseuille
flow [7, page 582]; andf .x/ = x: V.x/ = x.1 − x2/=6, which arises in natural
convection in a vertical slot [20].

3.4.2. Fundamental poloidal velocity fieldsConsider the force distribution
b = �−2

` Ž.x − s/ cos�`�`ix, wheres is a constant−1 < s < 1. We have SP`
b =

SP.−`/
b = Ž.x − s/=2, so that

2	̃`.x/ =
{

−q1.x0/p1.x/− q2.x0/p2.x/ x < s;

+q3.x0/p3.x/+ q4.x0/p4.x/ x > s;
(3.18)
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ix

iy

iz

2π/k cos γ

2π/k sin γ

0

γ

(a) (b) (c)

FIGURE 1. Poloidal rolls from the example in Section3.4.2with k = 2,  = ³=8, l y = 1, l z = 0 and
s = −1=2: (a) geometry; (b) schematic of the force distribution; (c) stream-lines (solid) and roll axis
(chain-line). Also marked in (b) and (c) are twoyz-period cells and|x| = 1 (dashed) and the planes
�` = 0; ³ cosþ`=k sin and 2³ cosþ`=k sin (solid).

	̃−` = 	̃` and the stream-function in anyx�`-plane is = −2�`	̃` sin�`�`. This
signifies a spatially periodic flow consisting of counterrotating rolls with axes parallel
to the walls (Figure1).

Note that the same poloidal velocity field would be generated by the force dis-
tribution �−2

` H.x − s/ sin�`�`i�`
, whereH is Heaviside’s step function. Neither of

these force distributions is purely poloidal; they have the same scalar SP but different
scaloidal parts and so give rise to different pressure distributions.

3.4.3. Fundamental toroidal velocity fieldsThe force distribution

b = �−1
` Ž.x − s/ sin�`�`i�`

gives rise to a toroidal velocity field with scalar− = 2−̃` cos�`�`; where −̃`.x/ =
G.x; s/ with G as in (3.11). The velocity field,u = 2�`−̃` sin�`�`i�` , is unidirectional
as shown in Figure2. This force distribution causes no other velocity field and makes
no contribution to the pressure.

Note that by the properties and construction of the Green’s functions, these poloidal
and toroidal examples have continuous velocity fields but discontinuous velocity
derivatives beyond a certain order, due to the delta-spike in the force distributions.

4. Conclusions

In general, the two main difficulties in solving the Navier-Stokes equations are the
incompressibility constraint and the nonlinearity of the advection terms. The Stokes
equations share the former and lack the latter. The quinquepartite decomposition
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(a) (b) (c) (d)

FIGURE 2. The example toroidal field of Section3.4.3, l y = 1; projection and periodicity (k and ) as in
Figure1: (a, b)l z = 0; (c, d)l z = 1; (a, c) schematic of force distribution; (b, d) chain-lines mark vortex
lines (which are also contours of constant velocity, by [9, Theorem 2]) and solid lines the stream-lines of
maximum velocity.

proves to be a effective way of dealing with the constraint, as shown in the past for
the poloidal-toroidal decomposition in spherical geometries [7, 13, 11].

Although we have only treated the Stokes and generalised Stokes equations, the
decomposition presented can be applied to any vector field equation with periodic
boundary conditions in two directions on a domain bounded in the third orthogonal
direction. It may be expected to be useful in other cases where a divergence-free
vector field is involved and the divergence-free subspacesB,P andT are invariant
under the linear operators involved. Two such examples are

@H
@t

= −�∇ × .∇ × H / and ∇ · H = 0;

which govern the decay of a magnetic fieldH in a motionless medium with uniform
resistivity � [4, pages 147–150] andu + K∇P = b and∇ · u = 0 which govern
groundwater flow [16].

Appendix A. Generalised Stokes problem

The decomposition of the generalised Stokes problem (1.1)–(1.2) is

.D2 − Þ/V = py − 〈by〉�; .D2 − Þ/W = pz − 〈bz〉�;
∇2
�
∇2

(
Þ − ∇2

)
	 = −∇2

�
bx + D∇

�
· b ≡ SPb; (A.1)

−∇2
�

(
Þ − ∇2

)
− = 3 · b ≡ ST b; (A.2)

px − 〈px〉 = 〈bx〉� − 〈bx〉; 〈px〉 = 〈bx〉 − ÞU and

∇2$ = ∇ · b − 〈∇ · b〉� ≡ SS b
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with the end condition (x = ±1)

∇2
�
$ = ∇2

�
D

(∇2 − Þ
)
	 + ∇

�
· b : (A.3)

For the Fourier coefficients (` 6= 0), the poloidal (A.1) and toroidal (A.2) equations
can be replaced with

�2
`

(
�2

` − D2
) (
½2

` − D2
)
	̃` = SP`

b and �2
`

(
½2

` − D2
)
−̃` = ST`

b

and the end condition (A.3) with �2
` $̃` = �2

` D
(
D2 − ½2

`

)
	̃` − i�`〈è ; b�`

〉�, where

½` ≡ √
Þ + �2

` . The Fourier scaloidal equation (3.8) is unchanged by the addition of
the generalisedÞ term.

The solution foru = 0 on x = ±1 has mean velocity components

V.¾/ = 〈
G.x; ¾/; 〈by〉� − py

〉
and W.¾/ = 〈G.x; ¾/; 〈bz〉� − pz〉 ;

where

G.x; ¾/ = 2 sinh
√
Þ{1 + min.x; ¾ /} sinh

√
Þ{1 − max.x; ¾ /}√

Þ sinh 2
√
Þ

;

and the toroidal scalar has Fourier coefficients−̃`.¾/ = 〈
G.x; ¾/;ST`

b
〉
, where

G.x; ¾/ = 2 sinh½`{1 + min.x; ¾ /} sinh½`{1 − max.x; ¾ /}
�2

`½` sinh 2½`

:

The	̃` are given by (3.12)–(3.13) and (3.14)–(3.17) with

p1.x/ = ½` sinh�`.1 + x/− �` sinh½`.1 + x/;

p2.x/ = cosh�`.1 + x/− cosh½`.1 + x/;

p3.x/ = ½` sinh�`.1 − x/− �` sinh½`.1 − x/ and

p4.x/ = cosh�`.1 − x/− cosh½`.1 − x/:
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